Fundamental supramolecular chemistry

Molecular recognition and self-assembly is at the core of all molecular function. Understanding and controlling molecular recognition and self-assembly is therefore key.  Our group specialize in particular in conformational control and hydrogen-bonding interactions at the molecular level. We have and continue to design and synthesise new hydrogen-bonding motifs – heterocyclic molecules that bear multiple donor and acceptor groups – and study their fundamental molecular recognition behaviour using advanced spectroscopic techniques including 2D NMR, x-ray crystallography and computational methods. We are exploiting these hydrogen-bonding motifs in supramolecular materials research – to self-assemble bottom-up stimuli responsive polymers – that can be used as components of solid polymer electrolytes in lithium ion battery applications and as self-healing materials. We are also exploiting our hydrogen-bonding motifs to develop new understanding and applications of systems chemistry.  


Our group also specialize in the development of aromatic oligoamide foldamers. Foldamers are molecules  that fold and assemble into conformationally ordered states with defined secondary, tertiary or quaternary structures. They are artificial molecules that mimic the 3D structures found in Natures biomacromolecules. Foldamers are therefore attractive architectures to explore the fundamental question – is the astonishing complexity of function achieved by Nature’s biomacromolecules limited to molecules comprised of α-amino acids? Aromatic oligoamide foldamers exhibit predictable folding behaviour arising due to conformational preference of the amide bond, steric considerations and proximal hydrogen-bonding sites along the backbone, making them excellent candidates for the design of higher order structures. Our group have established methods for solid-phase synthesis of aromatic oligoamide foldamers, and toolkit of building blocks that allow design of diverse folded architectures. Our most recent ongoing research efforts are focussed towards interfacing foldamers with natural biomacromolecules, for instance to inhibit protein-protein interactions and generate protein-foldamer hybrids.   


Key Papers

Z. Hegedus, C. M. Grison, J. A. Miles, S. Rodriguez-Marin, S. L. Warriner, M. E. Webb, A. J. Wilson:  A Catalytic Protein–Proteomimetic Complex: Using Aromatic Oligoamide Foldamers as Activators of RNase S, Chem. Sci., 2019, 10, 3956-3962. View Paper.

H. Coubrough, S. van der Lubbe, K. Hetherington, A. Minard, C. Pask, M. Howard, C. Fonseca Guerra, A. J. Wilson: Supramolecular Self‐Sorting Networks Using Hydrogen‐Bonded Motifs, Chem. Eur. J., 2019, 25, 785 –795. View Paper.

G. Cui, V. A. H. Boudara, Q. Huang, G. P. Baeza, A. J. Wilson, O. Hassager, D. J. Read, J. Mattsson: Linear shear and nonlinear extensional rheology of unentangled supramolecular side-chain polymers, J. Rheol.2018, 62, 1155-1174. View Paper.

I. Arrata, A. Barnard, D. C. Tomlinson, A. J. Wilson: InterfacingNative and Non Native Peptides: Using Affimers to Recognise α-Helix Mimicking Foldamers, Chem. Commun., 2017, 53, 2834-2837. View Paper.

K. A. Houton, G. M. Burslem, A. J. Wilson: Development of Solvent-Free Synthesis of Hydrogen-Bonded Supramolecular Polyurethanes, Chem. Sci., 2015, 6, 2382-2388. View Paper.

M. L. Pellizzaro, K. A. Houton, A. J. Wilson: Sequential and Phototriggered Supramolecular Self-Sorting Cascades Using Hydrogen-Bonded Motifs, Chem. Sci.2013, 4, 1825-1829. View Paper.

A. Gooch, N. S. Murphy, N. Thomson, A. J. Wilson: Side-Chain Supramolecular Polymers Employing Conformer Independent Triple Hydrogen Bonding Arrays, Macromolecules, 2013,  46, 9634–9641. View Paper.

A. Gooch,  C. Nedolisa, K. Houton, C. I. Lindsay, A. Saiani, A. J. Wilson: Tuneable Self-Assembled Elastomers Using Triply Hydrogen-Bonded Arrays, Macromolecules2012, 45, 4723-4729. View Paper.



Andrew Burnett (University of Leeds), Barry Blight (University of New Brunswick, CA), Celia Fonseca Guerra (VU-Amsterdam, NL), Johan Mattson (University of Leeds), Nick Warren (University of Leeds)


Current and Recent Funding 

EPSRC Programme Grant EP/M009521/1: ‘Enabling next generation lithium batteries’  

The Leverhulme Trust RPG-2019-169: ‘Reconfigurable Polymers via Supramolecular Self-Sorting’  

EPSRC EP/T011726/1: ‘Functional Hydrogen-Bonded Self-Sorting Networks’


Related Areas

New methods to modulate protein-protein interactions for drug discovery